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ABSTRACT 
 
     The most widely used parameter to represent rock abrasiveness is the Cerchar 
Abrasivity Index (CAI). The CAI value can be applied to wear predictions for TBM cutters. 
Many researchers showed that the CAI was strongly influenced by the degree of 
cementation, strength and amount of abrasive minerals, i.e. quartz content or equivalent 
quartz content in the rocks. The relationship between properties of rocks and CAI was 
explored in this research. A database with 223 observations was constructed, including 
rock types, uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), 
equivalent quartz content (EQC), quartz content, brittleness indices, and CAI. A linear 
model was developed by selecting independent variables while taking into consideration 
multicollinearity after running multiple linear regression analyses. Machine learning-
based regression methods including support vector regression (SVR), regression tree 
(RT) regression, and k-nearest neighbors (KNN) regression were used in addition to 
multiple linear regression. The results of the KNN model predicts the best performance. 
 
1. INTRODUCTION 
 
     The most widely used parameter to represent rock abrasiveness is the Cerchar 
Abrasivity Index (CAI). Cerchar abrasivity test is a fast and cost-effective method for 
evaluating abrasiveness of rocks (Ko et al. 2016). The CAI value can be applied to wear 
predictions for disc cutters in TBM tunneling. CSM model (Rostami 1997) estimated disc 
cutter life from CAI. The CAI and weight loss of disc cutters were employed by Gehring 
(1995). Frenzel (2011) examined the correlation between CAI and radial abrasion of 17-
inch disc cutters.  

CAI has been the subject of numerous studies. The influence of geomechanical 
parameters such as density, porosity, elastic modulus, rock brittleness and strength, as 
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well as petrographic factors such as quartz content and equivalent quartz content, on 
CAI were primarily investigated. Many researchers showed that the CAI was strongly 
influenced by the degree of cementation, strength and amount of abrasive minerals, i.e. 
quartz content or equivalent quartz content in the rocks (Al-Ameen and Waller 1994, 
Plinninger et al. 2003, Rostami et al. 2014, Moradizadeh et al. 2016, Ko et al. 2016, Yaralı 
2017, Ozdogan et al. 2018, Kahraman et al. 2018, Erarslan 2019). 

This research investigated the relationship between rock properties and CAI. In 
particular, the properties of the rocks used in this study are strength, brittleness, and 
quartz content or equivalent quartz content, which can be measured relatively easily. An 
extensive database containing information on rock types, uniaxial compressive strength 
(UCS), Brazilian tensile strength (BTS), equivalent quartz content (EQC), quartz content, 
brittleness indexes, and CAI has been developed. The information was gathered from 
published articles and the Geotechnical Data Report (GDR) of various tunneling projects. 
The followings are the brittleness indexes used in this study, which are a function of 
compressive and tensile strength of rocks (Meng et al. 2021). 
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Where, c is uniaxial compressive strength and t is Brazilian tensile strength. 
 

After performing multiple linear regression analyses, a linear model was developed 
by selecting independent variables while taking into account multicollinearity. Machine 
learning-based regression methods including support vector regression (SVR), 
regression tree regression (RFR), and k-nearest neighbors (KNN) regression were used 
in addition to multiple linear regression.  
 
 
2. MULTIPLE LINEAR REGRESSION ANALYSES 
 
     The dataset includes CAI, rock types, strength-related UCS and BTS, petrographic 
factors quartz and equivalent quartz content, and brittleness indexes B1 to B5. In addition, 
the new brittleness index, Bi, which is a function of UCS and BTS, and has been 
proposed from nonlinear regression with CAI. The data includes 223 observations.  
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     The histogram of variables is presented in Fig. 1. CAI is a dependent feature, and 
the rest are independent features. The data was divided into two groups: training and 
test set. The training set consisted of 80% of the data, whereas the test set consisted of 
the remaining 20%. 
 

 
Fig. 1 Histogram of variables 

 
     Brittleness indices B1 through Bi were derived using UCS and BTS, the 
multicollinearity of independent features should be evaluated. Multicollinearity can be 
detected via variable inflation factor (VIF). VIF score of an independent variable 
represents how well the variable is explained by other independent variables. In general, 
VIF exceeding 10 indicates high multicollinearity between the independent variable and 
the others. Table 1 shows the VIFs for each independent variables. 
 
Table 1 VIFs for each independent variables 

 Roc
k 
type 

UCS BTS B1 B2 B4 B5 Bi Quartz 
conten
t 

EQC 

VI
F 

1.82 140.4
8 

180.6
7 

3.5
9 

13.7
0 

97.9
7 

1151.4
1 

180.3
8 

13.04 12.3
8 

 
     Stepwise regression was performed to select the explanatory variables to be used 
in the multiple regression model. Stepwise regression selected independent variable of 
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Rock type, UCS, B2, Bi and quartz content and gave the coefficient of determination (R2) 
of 0.787. The best prediction model of the multiple regression is expressed as: 
 

 
20.017 0.016 1.839 6.929 0.836 5.342iCAI QC UCS B B RT= − + + − −  (7) 

 
where, QC is quartz content and RT is rock type, 1 for igneous, 2 for metamorphic, and 
3 for sedimentary rocks. 
     
     Fig. 2 shows the regression plot for the training and test data of the multiple linear 
regression model. The VIFs for the selected independent variables are shown in Table 
2. 
 

 
Fig. 2 Multiple linear regression plot for the training and test data 

 
Table 2 VIFs for the selected independent variables 

 Rock type UCS B2 Bi Quartz 
content 

VIF 1.233 7.837 3.469 7.197 1.102 

 
 
3. MACHINE LEARNING-BASED REGRESSION ANALYSES 
 
     In this study, 3 different machine learning-based regression methods were 
employed for predicting CAI. The methods included support vector regression (SVR), 
regression tree (RT) regression, and k-nearest neighbors (KNN) regression. Rock type, 
UCS, B2, Bi and quartz content were used as independent variables. Three evaluation 
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criteria, mean squared error (MSE), mean absolute percentage error (MAPE) and 
coefficient of determination (r2) assessed performance of the developed models.  
     Table 3 provides the training and test results of the applied models including the 
multiple linear regression model. The result indicates that the best model is the k-nearest 
neighbors (KNN) regression model for the training phase. In contrast, the multiple linear 
regression (MLR) model yields the worst results for the training phase. Support vector 
regression (SVR) model gives the best results for the test phase and regression tree (RT) 
regression model produces the worst results for the test phase. Overall, the results of the 
KNN model predicts the best performance when both training and test phase are taken 
into account. Fig. 3 depicts the KNN model's regression plot for both the training and test 
sets of data. 
 
Table 3 Training and test results of the applied models 

Methods Training Test 

MSE MAPE r2 MSE MAPE r2 

MLR 0.25 16.4 0.787 0.28 19.77 0.777 

SVR 0.15 11.21 0.879 0.25 17.48 0.808 

RTR 0.24 15.34 0.800 0.55 25.94 0.571 

KNN 0.09 9.57 0.919 0.28 17.82 0.782 

 

 
Fig. 3 KNN regression plot for the training and test data 

 
 
4. CONCLUSIONS 
 

The purpose of this study was to examine the relationship between rock properties 
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and CAI. The properties of the rocks used in this study are strength, brittleness, and 
quartz content or equivalent quartz content, all of which can be obtained relatively easily. 
A database with 223 observations was constructed, including rock types, uniaxial 
compressive strength (UCS), Brazilian tensile strength (BTS), equivalent quartz content 
(EQC), quartz content, brittleness indices, and CAI. A linear model was developed by 
selecting independent variables while taking into consideration multicollinearity after 
running multiple linear regression analyses. Machine learning-based regression methods 
including support vector regression (SVR), regression tree regression (RFR), and k-
nearest neighbors (KNN) regression were used in addition to multiple linear regression. 
The results of the KNN model predicts the best performance.  

 
 
REFERENCES 
 
Al-Ameen, S.I. and Waller, M.D. (1994), “The influence of rock strength and abrasive 

mineral content on the Cerchar Abrasive Index”, Eng. Geol., 36(3-4), 293-301. 
Erarslan, N. (2019), “Assessment of cerchar abrasivity test in anisotropic rocks”, 

Geomech. Eng., 17(6), 527-534. 
Frenzel, C. (2011). “Disc cutter wear phenomenology and their implications on disc cutter 

consumption for TBM”, Proceedings of 45th US Rock Mechanics/ Geomechanics 
Symposium, San Francisco, U.S.A, 26-29 June 2011. 

Gehring, K. (1995), “Leistungs- und Verschleissprognosen im maschinellen”, Tunnelbau 
Felsbau, 13(6), 439-448. 

Kahraman, S., Fener, M., Käsling, H., and Thuro, K. (2018), “Investigating the effect of 
strength on the LCPC abrasivity of igneous rocks”, Geomech. Eng.,15(2), 805-810. 

Ko, T.Y., Kim, T. K., Son, Y., and Jeon, S. (2016), “Effect of geomechanical properties 
on Cerchar Abrasivity Index (CAI) and its application to TBM tunnelling”, Tunn. 
Undergr. Space Technol., 57, 99-111. 

Meng, F., Wong, L. N. Y., and Zhou, H. (2021), “Rock brittleness indices and their 
applications to different fields of rock engineering: A review”, J. Rock Mech. Geotech. 
Eng. 13, 221-247.  

Moradizadeh, M., Cheshomi, A., Ghafoori, M., TrighAzali, S. (2016), “Correlation of 
equivalent quartz content, Slake durability index and Is50 with Cerchar abrasiveness 
index for different types of rock”, Int. J. Rock Mech. Min. Sci., 86, 42-47. 

Ozdogan, M.V., Deliormanli, A.H., and Yenice, H. (2018), “The correlations between the 
Cerchar abrasivity index and the geomechanical properties of building stones”, Arab 
J Geosci, 11, 604. 

Plinninger, R., Kasling, H., Thuro, K., and Spaun, G. (2003), “Testing conditions and 
geomechanical properties influencing the CERCHAR abrasiveness index (CAI) 
value”, Int J Rock Mech Min Sci, 40, 259–263. 

Rostami, J. (1997). “Development of a Force Estimation Model for Rock Fragmentation 
with Disc Cutters through Theoretical Modeling and Physical Measurement of Crushed 
Zone Pressure”, Ph.D. Thesis, Colorado School of Mines, Golden, Colorado, USA 

Rostami, J., Ghasemi, A., Gharahbagh, E.A., Dogruoz, C., and Dahl, F. (2014). “Study 
of dominant factors affecting Cerchar abrasivity index”, Rock Mech Rock Eng. 47(5), 
1905-1919. 



The 2021 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM21)
GECE, Seoul, Korea, August 23-26, 2021

  

Yaralı, O. (2017), “Investigation into Relationships Between Cerchar Hardness Index and 
Some Mechanical Properties of Coal Measure Rocks”, Geotech Geol Eng, 35, 1605–
1614. 

 
 
 


